Project Title	Funding	Strategic Plan Objective	Institution
Regulation of gene expression in the brain	\$2,003,514	Q4.S.B	National Institutes of Health
Animal models of neuropsychiatric disorders	\$1,776,673	Q4.S.B	National Institutes of Health
Studies of pediatrics patients with genetic and metabolic disorders	\$1,546,115	Q4.S.B	National Institutes of Health
Behavioral and physiological consequences of disrupted Met signaling	\$800,000	Q4.S.B	University of Southern California
Using induced pluripotent stem cells to identify cellular shenotypes of autism	\$792,000	Q4.S.B	Stanford University
Dissecting the neural control of social attachment	\$764,776	Q4.S.B	University of California, San Francisco
Role of a novel Wnt pathway in autism spectrum disorders	\$600,000	Q4.S.B	University of California, San Francisco
Novel therapeutic targets to treat social behavior deficits n autism and related disorders	\$560,625	Q4.S.B	University of Texas Health Science Center at San Antonio
Examination of the mGluR-mTOR pathway for the dentification of potential therapeutic targets to treat tragile X	\$542,684	Q4.S.B	University of Pennsylvania
dentifying therapeutic targets for autism using SHANK3- deficient mice	\$483,773	Q4.S.B	Mount Sinai School of Medicine
Autism iPSCs for studying function and dysfunction in numan neural development	\$481,461	Q4.S.B	Scripps Research Institute
ong-term effects of early-life antipsychotic drug reatment	\$406,200	Q4.S.B	Northern Kentucky University
Cellular and genetic correlates of increased head size in autism spectrum disorder	\$405,041	Q4.S.B	Yale University
The genetic and neuroanatomical origin of social behavior	\$391,250	Q4.S.B	Baylor College of Medicine
Neurobiological signatures of social dysfunction and repetitive behavior	\$389,854	Q4.S.B	Vanderbilt University
Neuroligin function in vivo: Implications for autism and mental retardation	\$388,575	Q4.S.B	University of Texas Southwestern Medical Center
Mechanisms of stress-enhanced aversive conditioning	\$381,250	Q4.S.B	Northwestern University
Exploring the neuronal phenotype of autism spectrum disorders using induced pluripotent stem cells	\$368,475	Q4.S.B	Stanford University
Role of UBE3A in neocortical plasticity and function	\$367,500	Q4.S.B	Duke University
Central vasopressin receptors and affiliation	\$360,225	Q4.S.B	Emory University
Neurobiology of sociability in a mouse model system elevant to autism	\$350,831	Q4.S.B	University of Pennsylvania
Small-molecule compounds for treating autism spectrum disorders	\$350,000	Q4.S.B	University of North Carolina at Chapel Hill
Dissecting the circuitry basis of autistic-like behaviors in nice	\$350,000	Q4.S.B	Massachusetts Institute of Technology
16p11.2: defining the gene(s) responsible	\$350,000	Q4.S.B	Cold Spring Harbor Laboratory

Project Title	Funding	Strategic Plan Objective	Institution	
Patient iPS cells with copy number variations to model neuropsychiatric disorders	\$348,624	Q4.S.B	The Hospital for Sick Children	
The genetic control of social behavior in the mouse	\$342,540	Q4.S.B	University of Hawai'i at Manoa	
Novel genetic models of autism	\$336,813	Q4.S.B	University of Texas Southwestern Medical Center	
Functional genomic dissection of language-related disorders	\$320,076	Q4.S.B	University of Oxford	
Control of synaptic protein synthesis in the pathogenesis and therapy of autism	\$301,087	Q4.S.B	Massachusetts General Hospital	
Serotonin, corpus callosum, and autism	\$300,218	Q4.S.B	University of Mississippi Medical Center	
nvestigating the effects of chromosome 22q11.2 deletions	\$300,000	Q4.S.B	Columbia University	
nsight into MeCP2 function raises therapeutic possibilities for Rett syndrome	\$291,260	Q4.S.B	University of California, San Francisco	
Animal model of speech sound processing in autism	\$283,249	Q4.S.B	University of Texas at Dallas	
Neurobiology of mouse models for human chr 16p11.2 microdeletion and fragile X	\$249,480	Q4.S.B	Massachusetts Institute of Technology	
Serotonin, autism, and investigating cell types for CNS disorders	\$249,000	Q4.S.B	Washington University in St. Louis	
dentification of autism genes that regulate synaptic NRX/NLG signaling complexes	\$231,066	Q4.S.B	Stanford University	
Neuropharmacology of motivation and reinforcement in mouse models of autistic spectrum disorders	\$228,965	Q4.S.B	University of North Carolina School of Medicine	
Genetic models of serotonin transporter regulation linked o mental disorders	\$219,038	Q4.S.B	Medical University of South Carolina	
Synaptic and circuitry mechanisms of repetitive pehaviors in autism	\$200,000	Q4.S.B	Massachusetts Institute of Technology	
Genomic imbalances at the 22q11 locus and predisposition to autism	\$200,000	Q4.S.B	Columbia University	
Using zebrafish and chemical screening to define function of autism genes	\$199,999	Q4.S.B	Whitehead Institute for Biomedical Research	
The role of SHANK3 in autism spectrum disorders	\$180,000	Q4.S.B	Mount Sinai School of Medicine	
Functional study of synaptic scaffold protein SHANK3 and autism mouse model	\$150,000	Q4.S.B	Duke University	
Murine genetic models of autism	\$142,791	Q4.S.B	Vanderbilt University	
/asopressin receptors and social attachment	\$121,500	Q4.S.B	Emory University	
ntegrated approach to the neurobiology of autism pectrum disorders	\$116,672	Q4.S.B	Yale University	
Using iPS cells to study genetically defined forms with	\$100,000	Q4.S.B	Stanford University	

Project Title	Funding	Strategic Plan Objective	Institution
Synaptic deficits of iPS cell-derived neurons from patients with autism	\$86,446	Q4.S.B	Stanford University
Using Drosophila to model the synaptic function of the autism-linked NHE9	\$75,000	Q4.S.B	Massachusetts Institute of Technology
Systematic analysis of neural circuitry in mouse models of autism	\$74,991	Q4.S.B	Cold Spring Harbor Laboratory
OCT blockade to restore sociability in 5-HT transporter knock-out mice	\$74,250	Q4.S.B	University of Texas Health Science Center at San Antonio
The role of glutamate receptor intereacting proteins in autism	\$62,500	Q4.S.B	Johns Hopkins University School of Medicine
A probiotic therapy for autism	\$62,500	Q4.S.B	California Institute of Technology
Perinatal choline supplementation as a treatment for autism	\$62,500	Q4.S.B	Boston University
Developing a new model system to study mechanisms of attention control	\$60,000	Q4.S.B	Stanford University
Role of RAS/RAF/ERK pathway in pathogenesis and treatment of autism	\$51,640	Q4.S.B	New York State Institute for Basic Research in Developmental Disabilities
Characterization of autism susceptibility genes on chromosome 15q11-13	\$51,326	Q4.S.B	Beth Israel Deaconess Medical Center
Vicarious neural activity, genetic differences and social fear learning	\$51,326	Q4.S.B	Oregon Health & Science University
A mouse model for human chromosome 7q11.23 duplication syndrome	\$49,452	Q4.S.B	University of Toronto
Effect of abnormal calcium influx on social behavior in autism	\$31,250	Q4.S.B	University of California, San Francisco
Studying the neural development of patient-derived stem cells	\$31,250	Q4.S.B	Johns Hopkins University School of Medicine
Deficits in tonic inhibition and the pathology of autism spectrum disorders	\$31,250	Q4.S.B	Tufts University
Role of cadherin-8 in the assembly of prefrontal cortical circuits	\$31,188	Q4.S.B	Mount Sinai School of Medicine
Validating electrophysiological endophenotypes as tranlational biomarkers of autism	\$28,049	Q4.S.B	University of Pennsylvania
Shank3 mutant characterization in vivo	\$28,000	Q4.S.B	University of Texas Southwestern Medical Center
Central vasopressin receptors and affiliation (supplement)	\$25,000	Q4.S.B	Emory University
Cellular and molecular pathways of cortical afferentation in autism spectrum disorders	\$15,000	Q4.S.B	University of Geneva
Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$0	Q4.S.B	Massachusetts Institute of Technology
Investigation of the role of MET kinase in autism	\$0	Q4.S.B	Johns Hopkins University School of Medicine

Project Title	Funding	Strategic Plan Objective	Institution	
16p11.2 deletion mice: Autism-relevant phenotypes and treatment discovery	\$0	Q4.S.B	Stanford University	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill	
Role of UBE3A in neocortical plasticity and function	\$0	Q4.S.B	University of North Carolina at Chapel Hill	
Adverse prenatal environment and altered social and anxiety-related behaviors	\$0	Q4.S.B	University of Pennsylvania	
Novel strategies to manipulate Ube3a expression for the treatment of autism and Angelman syndrome	\$0	Q4.S.B	University of North Carolina at Chapel Hill	
Identifying impairments in synaptic connectivity in mouse models of ASD	\$0	Q4.S.B	University of Texas Southwestern Medical Center	
Mice lacking Shank postsynaptic scaffolds as an animal model of autism	\$0	Q4.S.B	Massachusetts Institute of Technology	
Neural and cognitive mechanisms of autism	\$0	Q4.S.B	Massachusetts Institute of Technology	
The role of SHANK3 in the etiology of autism spectrum disorder	\$0	Q4.S.B	Johns Hopkins University	
Identifying genetic modifiers of rett syndrome in the mouse	\$0	Q4.S.B	Baylor College of Medicine	
Novel approaches to enhance social cognition by stimulating central oxytocin release	\$0	Q4.S.B	Emory University	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill	
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders - 1	\$0	Q4.S.B	Burnham Institute	
Modeling and pharmacologic treatment of autism spectrum disorders in Drosophila	\$0	Q4.S.B	Albert Einstein College of Medicine of Yeshiva University	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill	
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders -2	\$0	Q4.S.B	Burnham Institute	
Novel probiotic therapies for autism	\$0	Q4.S.B	California Institute of Technology	
Animal models of autism: Pathogenesis and treatment	\$0	Q4.S.B	University of Texas Southwestern Medical Center	
A novel cell-based assay for autism research and drug discovery	\$0	Q4.S.B	University of Arizona	
Impact of an autism associated mutation in DACT1 on brain development and behavior	\$0	Q4.S.B	University of California, San Francisco	